Physical Proximity May Promote Lateral Acquisition of Bacterial Symbionts in Vesicomyid Clams
نویسندگان
چکیده
Vesicomyid clams harbor intracellular sulfur-oxidizing bacteria that are predominantly maternally inherited and co-speciate with their hosts. Genome recombination and the occurrence of non-parental strains were recently demonstrated in symbionts. However, mechanisms favoring such events remain to be identified. In this study, we investigated symbionts in two phylogenetically distant vesicomyid species, Christineconcha regab and Laubiericoncha chuni, which sometimes co-occur at a cold-seep site in the Gulf of Guinea. We showed that each of the two species harbored a single dominant bacterial symbiont strain. However, for both vesicomyid species, the symbiont from the other species was occasionally detected in the gills using fluorescence in situ hybridization and gene sequences analyses based on six symbiont marker genes. Symbiont strains co-occurred within a single host only at sites where both host species were found; whereas one single symbiont strain was detected in C. regab specimens from a site where no L. chuni individuals had been observed. These results suggest that physical proximity favored the acquisition of non-parental symbiont strains in Vesicomyidae. Over evolutionary time, this could potentially lead to genetic exchanges among symbiont species and eventually symbiont displacement. Symbiont densities estimated using 3D fluorescence in situ hybridization varied among host species and sites, suggesting flexibility in the association despite the fact that a similar type of metabolism is expected in all symbionts.
منابع مشابه
Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis.
Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decou...
متن کاملAncient Occasional Host Switching of Maternally Transmitted Bacterial Symbionts of Chemosynthetic Vesicomyid Clams
Vesicomyid clams in deep-sea chemosynthetic ecosystems harbor sulfur-oxidizing bacteria in their gill epithelial cells. These symbionts, which are vertically transmitted, are species-specific and thought to have cospeciated with their hosts. However, recent studies indicate incongruent phylogenies between some vesicomyid clams and their symbionts, suggesting that symbionts are horizontally tran...
متن کاملEvidence for homologous recombination in intracellular chemosynthetic clam symbionts.
Homologous recombination is a fundamental mechanism for the genetic diversification of free-living bacteria. However, recombination may be limited in endosymbiotic bacteria, as these taxa are locked into an intracellular niche and may rarely encounter sources of foreign DNA. This study tested the hypothesis that vertically transmitted endosymbionts of deep-sea clams (Bivalvia: Vesicomyidae) sho...
متن کاملLoss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uv...
متن کاملPyrosequencing analysis of endosymbiont population structure: co-occurrence of divergent symbiont lineages in a single vesicomyid host clam.
Bacteria-eukaryote endosymbioses are perhaps the most pervasive co-evolutionary associations in nature. Here, intracellular chemosynthetic symbionts of deep-sea clams (Vesicomyidae) were analysed by amplicon pyrosequencing to explore how symbiont transmission mode affects the genetic diversity of the within-host symbiont population. Vesicomyid symbionts (Gammaproteobacteria) are presumed to be ...
متن کامل